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Abstract The effects of stress work on similarity solutions of mixed convection in radially rotating 
channels with wall-transpiration are dealt with. Imposing proper geometric limitations, constant waN- 
transpiration, and linear wall-temperature distribution, similarity equations for two classes of rotating 
chamlel flows tire developed : (I) effects of viscous dissipation and compression work on mixed convection 
in a rotating solid-walled channel, and (2) the effect of compression work on mixed convection in a rotating 
semiporous-walled channel with transpiration. Flow and heat translizr characteristics with the effects of 
the centrifugal-buoyancy, Coriolis force, wall-transpiration, viscous dissipation and compression work tire 
discussed in the similarity solutions. The present study gives a better understanding of the complex mixed 

convection problem. 

I N T R O D U C T I O N  

ROTATING channel flow and heat transfer are closely 
related to convective heat transfer in thermal systems 
such as gas turbines and rotating electrical machinery. 
It is also attractive academically due to the complexity 
in flow structure under the influence of  rotation_ In the 
literature the effects of Coriolis-induced secondary flow 
and centrifugal-buoyancy on convective heat transfer 
have been studied extensively, e.g_ theoretical analyses 
[1,2], numerical studies [3, 4] and experimental inves- 
tigations [5-9]_ Furthermore,  if the wall-transpiration 
effect is considered, more complexities could be intro- 
duced, and only a few two-dimensional studies are 
available for this type of  flow. Since the typical tran- 
spiration cooling channels are of  low cross-sectional 
aspect-ratios [10, 11], a two-dimensional analysis is 
proper for understanding of  the convection mechan- 
ism. Epifanov et aL [12] carried out an integral analy- 
sis to determine the forced convection heat transfer 
rate. Soong and Hwang [13] performed a theoretical 
analysis on mixed convection and flow-reversal in 
rotating semiporous-walled channels without stress 
work. 

In a rotating thermal system, high rotation rate may 
induce significant Coriolis and centrifugal-buoyancy 

tAuthor to whom all correspondence should be addressed. 

forces, and stress works including viscous dissipation 
and compression work. The stress works have been 
considered in natural convection [14-16] and mixed 
convection [17-19] in gravitational force field. In a 
rotating disk system, Chew [20] has also advocated 
the significance of  the stress works. To the authors '  
best knowledge, mixed convection with stress work 
effects in radially rotating channels has not been 
reported yet. 

By considering the effects of  stress works, the pre- 
vious analysis [13] is further extended in the present 
study. A theoretical model is proposed for studying 
the rotation-induced buoyancy, wall-transpiration 
and especially, the stress work effects_ Assumifig a 
large semi-span eccentricity and slenderness of  the 
channel, and imposing the thermal boundary con- 
dition of  a constant wall-temperature gradient, simi- 
larity equations for two classes of  flow configurations 
are rigorously developed. They are: (1) mixed con- 
vection with both compression work and viscous dis- 
sipation in a radially rotating solid-walled channel;  
and (2) mixed convection with compression work 
effect in a one-sided porous-walled channel. The simi- 
larity equations are solved and the effects of  rotation, 
transpiration, and stress works on the hydrodynamic 
and thermal characteristics are examined. A dosed-  
form analytical solution can be found readily for some 
solid-walled channel flows. Flow-reversal can be 
induced by wall-transpiration and buoyancy effects. 
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N O M E N C L A T U R E  

C,. skin friction coefficient 
c v constant pressure specific heat 
Ec Eckert number, Uo/ceAT 
Ec* reduced Eckert number, Ec/Re 
.f dimensionless stream function or 

transverse velocity, V/V,, 
G,,, rotational G-number, (X~oZ)H/cvAT 
,q dimensionless temperature, 

(T-- T~,,)(PeAT~u.1) 
H channel height 
h heat transfer coefficient 
k thermal conductivity 
L channel length 
Nu Nusselt nurnbcr, hH/k 
P pressure 
/5 reduced prcssure, 

P +  (pc,;-~/2)[(X+ X,,) :+ Y2] 

P' .  p '  dimensional and dimensionless pressure 
departure, p'  = P'/prU~ 

Pe Peclet number, Pr Re 
Pr Prandtl number, v/:x 
R position vector emanating from rotation 

cen tcr 
Ra,,, rotational Rayleigh number, 

(X~to2[~AT~.H 3 Pr)/v: 
Re main flow Reynolds number. U.H/v 
Re~ Reynolds number based on local mean 

velocity. U., H/v 
Re,, wall suction Reynolds number, l/,,H/v 
Ro rotation number, toH/Uo 
T temperature 
AT~ characteristic temperature difference 
U, V velocity components  
U. mean velocity at X = 0 

L/.+, u.,, dimensional and dimensionless local 
mean velocity. U.,,(X) = (z..u., 

u. t, dimensionless velocity components.  
U/U. and V/U. 

X. Y Cartesian coordinates 
x. y dimensionless coordinates. X/H and Y/H 
X~, .v+ dimensional and dimensionless semi- 

span eccentricity, .¥~ = Hx+. 

Greek symbols 
thermal diffusivity 

fl thermal expansion coefficient 
6 dimensionless wall tcrnpcrattLre 

difference, (To, , -  T,,,)/(Pe ATJ+m) 
<5* wall temperature difference parameter, 

,'5/(1 - G,,,) 
0 dimensionless temperature difference. 

( T -  L ) / A L  
It viscosity 
v kinematic viscosity 
Fl pressure-drop parameter. 

~'~,[( -- Re,/p U~.) x 
(i~ P /?.v) + 2Ro Re,, ( U./ U.,) ./] dv 

p density 
r solid wall temperature gradient 
4~ viscous dissipation function 
tp stream function 
~,J rotation speed. 

Subscripts 
cr critical condition 
m mean 
pw porous  wal l  
r reference condition 
sw solid wall 
+o rotation condition. 

The effects of  stress work on the threshold of  the flow- 
reversal are also studied. 

THEORETICAL ANALYSIS 

Flow confi.quration and goeerning equations 
Figure 1 shows a channel consisting of  two parallel 

walls, one solid and the other porous, separated by a 
spacing H and rotating at a speed ~o about  an axis 
perpendicular to the axis of  the channel. The axis of  
rotation lies at a distance Xo away from the channel 
entrance. The main stream flows along the channel 
axis and bleeds out through the porous-wall at a tran- 
spiration velocity V,+.(X). The main stream may flow 
radially outward or inward, as shown in Figs. 1 (a) and 
(b), respectively. In the analysis, the flow is assumed to 
be laminar and steady, and the compression work and 
viscous dissipation are considered. Since the buoyancy 
effect becomes significant in the presence of  the high 

centrifugal acceleration, Boussinesq's approximation 
is invoked to allow for a linear variation of  density 
with temperature in the centrifugal force term. Gravita- 
tional effect in this problem is relatively small and can 
be neglected. 

Subject to the above assumptions, the con- 
servations of  mass. momentum and energy in vector 
form are depicted as follows : 

V ' V = 0  (1) 

( V. V) V = vV 2 V-- VP'/p + f l ( T -  Tr)(W x oJ x R) 

- 20~ x V ( 2 )  

( V ' V ) T =  ~V'-T+ V'VP/pcp+Itdp/pc p (3) 

where the subscript r denotes the condition at origin 
(0, 0) and is used as the reference condition, 
P '  = P -  Pr the pressure departure from the reference 
condition, R the position vector emanating from the 
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I Y Vw = constant 

i . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 - _  
(x. Y) = z ~  no,, --.,---Ia x [ 

(a) Radi.ny outward flow, fi = (X+Xo)'t+ Y ~ 

V w = c o n n t a l a t  

!...!...L!...!...!..!..!..t .I . I !  

X- 
x ,  [ - -  

X o 

(b) Radlnlly l.nlrard flow, R=  ( X - X o ) 7 +  Y i 

FiG 1. Physical conliguration and coordinate system. 

. ~H 

rotation center and 4~=2[(gUI&V)'-+(CV/gY)'-]+ 
(~U/C Y+ ~ V/?X) "- the dissipation function. 
Assuming the channel is very slender and the axial 
velocity U is much larger than that of  the transverse 
velocity V, only the term (gU/gY) 2 in 4) remains. The 
radial direction hydrostatic pressure distribution is 
P,=  Po+(I/2)p(X+_Xo) "-u) 2. The term V ' V P  means 
the work done per unit time per unit volume. Fur- 
thermore, by substituting the pressure distribution 
into V . V P  one has approximately U'p(X+_ 
Xo)o)'-. This means the work is done by the product 
of radial velocity and weight of  air per unit volume. 
It is noted that  the weight of  air may become ex- 
tremely large due to the laigh speed rotat ion.  There-  
fore, the compress ion work term can be wri t ten as 

V" V P /pc,, ~ ( 1/p%) UO P~/~X = o)'-(X+ Xo) U/%. 

Finally, the governing equat ions  can be writ ten in 
dimensionless  forms as 

?u ?r 
- + = = 0 (4) 
~.~.- C V 

Cu Cu I ?p' 
l g ~  ~ - U ~  = V 2 l l  - - -  

c r  ~,_~' R e  ~'x 

Ra,,, ( x + _ X o ] o + 2 R o r  
Pe Re \ ,:~ / 

cx t g'l' Re v t - -  ['1' 

R a . , , ( v )  

El: u ~ + c , ,  = V-'0+G,,, ~:-+X'!u+Ec* gu . c., i t  Pe -"~ L~]. j (7) 

by using the t rans format ions  

u =  U / U . ,  c =  V / U . ,  x = X / H ,  ) ' =  Y /H,  

p' = P'/p, Uo, 0 = ( T -  Tr)/AT~, 

Re = U.H/v, Pe = Pr Re, Ro = (oH/Uo, 

Ra,, = (X~co'-BAT~.H ~ Pr)/v'-, 

G,,, = ( X ~ m ' - ) H / c . A T ~ .  Ec  = U ~ / c . A T ~ .  

Ec* = Ec/Re 

where Uo is the mean velocity at X = 0, T, = 7-,,,.(0) 
the solid-wall temperature  at X =  0 and AT~ the 
characteris t ic  temperature  difference to be determined 
later. The boundary  condi t ions  at the solid wall, 
y = 0, are u = r = O-O~,,(x) = 0; and at the porous 
wall, v =  1, are u = r - v , ,  = 0-0p,, .(x) = 0, in which 
the subscripts  sw and pw denote  the solid and  porous 
wall, respectively. 

Sbnilari O' tran,~'/brmation and equations 
In this flow configurat ion,  it is expected that  the 

condi t ion  of  fully-developed flow is not the same as 
(5) that  of  the convent ional  internal  flows, that  is 

Cu/Cx = r = C0/g.,c = 0_ Since the fluid bleeds out 
through the porous  wall at a rate o f p V ~ ( X )  per unit  
area, the mass balance along the channel  length is 

I 
X 

(6) pUm(X)Hb = p U o H b - b  pV,~,(x) dX, 
,10 
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where h is the channel depth, or in a dinaensionless 
form: 

16,,(_v) = I - -  I t / ' , , ( v )d .v  (8) 

for a constant density p. The mean velocity u.l(x) will 
be used as a basis for the fully developed invariant 
profile of  axial velocity. To develop the similarity 
equations, the stream function is expressed in a form 
of separation of  variables, namely 

,k(-v,_r) = Um(-V)J'(_V) (9) 

where / ( y )  is an invariant in x-direct ion and it may 
exist under a certain form of  transpirat ion velocity 
r , , (x ) .  By  using u = ?q.,/~_l' a n d  t ,  = -~b/C'x, one has 

u(.v..l') = U m ( X ) f ' ( y )  and r ( x , . r )  = --  ui , , (x) f (y)  

(10) 

where ' denotes the differentiation. Combining equa- 
tions (5) and (6) one obtains 

(":'/,,, 
f ' +  Re  ui , , ( f f" '  - f ' f " )  + 2 \11,1,/ 

- R e  ui~i- i f ' +  . /  
Hm llm 

Ra" [-\ ' - t -v"o ) ' 0 , ] .  (]1) 
P C  ' tl  m "%-,: - I  Xe 

It is obvious that, to attain a similarity form of 
equation (I 1), the least demand for the temperature 

function is O ( x , y ) = f n ( x ) + c o n s t ' u . , ( x ) ' g O ' ) ,  where 
./n(x) is a certain function of  x. For convenience, 
define 

0(.v, _l') = 0~,, (.v) + Pe u., (.v)g(r) (12) 

where 0,,,(x) is a prescribed solid-wall temperature 
distribution, and g 0 9  the x-invariant temperature 
function. With the aid of  equation (12) momentum 
equation (11) and energy equation (7) become 

f '" + Re u ; . ( f ] ' - . f ~ f " )  + 2  \ u . , l  

- Re (u":- !1".,,,'.'o ~ #" Um + f \ llm ]- /~m 

, (  o,,, +"m ,,3, 
L_ .x-~ ' x'~ \ P e  u m ii m " j j '  

u~, u,,, ( .v +_v,,'~ -~~ , 

g" + Peui, l( L~ l ' - f ' g )  + , q  o:~- , . . = - G,,, )./" 

o". 
- - E c * u . l ( f " )  "--- - -  (14) 

Pe II m " 

The two functions v,,.(x) and O,,,(_v) are to be 
determined by satisfying certain restrictions. For 
simplicity, the following assumptions are employed : 

( 1 ) The wall-transpiration velocity is constant, that 
is, ui,,(x) = - r , ,  = constant and ui~, = ui~i = 0. 

(2) Ratios of  channel length to semispan eccen- 
tricity and channel height to length are sufficiently 
small, that is L/X~ and H / L  << 1. Consider. for 
example, a turbine disk of  radius 350 ram, and turbine 
blades of  span 80 mm, the hydraulic diameter of  
cooling channel is of  order of  I m m  Then, referring to 
Fig. 1, one has the approximations : ( v+_.v.)/x~ ~ -I- I, 
y/.v~ << I and 0, >> 0,. Thus. the r.h.s, o [equa t ion  (13) 
reduces to + Ra,, "9", and the parenthesis on the r.h.s. 
of (14) reduces to (0~,,-G,,,). 

(3) The viscous dissipation term in equation (14), 
Ec* u . , (x) ( f")  -~, can be .,,--independent only if u., is a 
constant, that is, in the case of  solid-walled channel 
or zero-transpiration (u,,, = I). Otherwise, tiffs term 
must be neglected by assuming the small viscous dis- 
sipation effect. 

(4) The solid-wall temperature-gradient is con- 
stant, that is. 0',,, (x) = constant. Therefore, 
without loss of  generality, specify 0[,, = 1 or 
T,,,(,~) = 7",,,(0)+AT<._v. The characteristic tem- 
perature difference can now be determined as 
ATL. = r,,,H, in which r~,, is a prescribed solid-wall 
temperature gradient. The function g(y)  becomes 

T i . v . . i ' ) -  T,,, (x )  
g(_l') = 

Pe u,lr,,, H 

At the porous wall, y = 1, wall temperature can be 
specified as ,q(l) = [Tw(.v) - T,,, (x)]/[Pe u.,,z~,, H] = 6 
or, in other words, Tv,,(x) = T,,,(x) + 6  Pe u.,r,,,H. If 
T,,,(x) and u.,,(.v) are both linear in x, the porous-wall 
temperature Tp,, (x) is also a linear one. The parameter 
~$ represents the temperature difference between the 
solid and the porous walls and, therefore, it is also an 
index of  asymmetric wall heating. 

As listed in Table I four possible cases for the 
present configuration can be classified into two cate- 
gories, the buoyancy-opposed mixed convection with 
Ra., ,(x+_x.)/x~ > 0 and buoyancy-assisted one with 
Ra,, ,(x+_x,)/x~ < 0. To unify the equation of  motion, 
the sign of  (.v+_xo)/x~ ( ~ - t - 1 )  can be absorbed into 
the parameter Ra.,. The positive Ra,,, is respon- 
sible for the case of  buoyancy-opposed flow and 
the negative Ra.,, stands for the case of  buoyancy- 
assisted flow. 

With assumptions (I)-(4),  two sets of  similarity 
equations can be attained from equations (13) and 
(14): 

Class 1 : mixed convection with stress work effects in 
a rotating solid-walled channel, that is. Re,, = 0 (or 
Un, = I), G., >1 O, and Ec* ~> 0 

. / w =  Ra,,,g" (15) 

g" = ( 1 - G,, ,) f '  - Ec* ( f " )  3. (16) 

Class 2 : mixed convection with effects of  transpiration 
and compression work 

f ; ' - R e w ( f f " ' - f ' f " )  = Ra.,,,q" (17) 
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Table I. Possible situations of the present flow configuration 

Main flow Solid wall (x+x,)/.v~ r Ra,., (x+x,,)/v= 

outward hot ~ + > 0 > 0 
outward cold ~_ + <0 <0 
inward hot ~ - > 0 < 0 
inward cold ~_ - < (t > 0 

Type of 
mixed convection 

opposed 
assistcd 
assisted 
opposcd 

g " - P r R e , , ( . f g ' - f ' g )  = (I -G, , , ) . / "  18) 

where Re,, = V,, H/v is wall-suction Reynolds number. 
The boundary conditions for both of  the classes 1 and 
"3 a r e  

. / ( 0 )  = 1"(0) = f ( I ) -  1 = . / " ( 0 )  = 0 

g(0) = , q ( 1 ) - 6  = 0. (19) 

Flow and heat tran.!fer parameters 
Following the conventional definition 

Cf = 2/~(?U/? Y),,/pU,7,(X) (20) 

the skin friction coefficients for solid and porous walls 
can be cxprcssed respcctively as 

Cr.,,, Re, = 2./"(0) and Cr.r,, Re~ = - 2 . / " ( I )  

(21) 

where Re~ is the Reynolds number based on the local 
mean velocity, U,,H/v. 

By using a reduced pressure / 5 =  P+(pw'- /2)  x 
[(X_+ X, ) - '+  Y-'] and the X-molnentunl equation, the 
pressure-drop can be characterized by a cross-sec- 
tional avcrage of  a combined pressure drop involving 
the Coriolis effect [1 I. 19] 

- - / dv 
, ,,u,,, tu , , , )  J 

I' 
= - f " ' ( 0 ) - - R a . , ,  .q(y) dl'. (22) 

The heat transfer rate is characterized by the 
Nussclt number 

Nu = hH/k = - -  (?T/? Y),,.H/( 7 ' , , -  T~,) (23) 

where 

, f" 
T. (X)  = ~J.,tt.)., UTd  Y 

is the fluid bulk temperature. The resultant Nusselt 
numbers at solid and porous walls can be written as 

Nu~,, = g'(0) / ~ f'gd_t' (24a) 

and 

Nup . . . .  .q'(l) / ( 6 -  f , ' f ' g d y ) .  (24b) 

In the case of  Re,, 4: 0, that is, thc solutions of  class 

(2), the integral in cquation (24) can be evaluated 
readily from energy cquation (18): 

f '  ~5 I [ I - G . , , + q ' ( O ) - . q ' ( l ) ] .  / " g d y  = "~ + 2Pr Re,, " 
i - 

(25)  

When transpiration is absent, this integral can be 
evaluated simply by using the analytic solutions of  
class I for zero-transpiration. 

Gorerning paranwters 
Six non-dimensional groups. Pr, Re,,. Ro, Ra,,, G,., 

and Ec* are shown in equations (15)-(18) and (22). Pr 
is the Prandtl nt.mber, and Re,, the wall-transpiration 
Reynolds number. The rotation number Ro and the 
rotational Rayleigh number Ra,., characterize the 
Coriolis force and the centrifugal-buoyancy effects. 
respectivcly. It is noted that, for the present 
configuration, the Coriolis force can only provide 
a modification of  the hydrostatic pressure field 
through the parameter Ro in equations (22). 
Stress work parameters the rotational G-number 
G,., = (X~w2)H/%AT~. and the reduced Eckert number 
Ee* = Ee/Re = Re" (v/H)'-/%AT~ indicate the measure 
of  the compression work and viscous dissipation, 
respectively. 

In the laminar flow regime the Reynolds number is 
of  order of  10 ~, and the channel height is of  order of  
I mm. The spanwise variation of  the turbine blade 
temperature is usually of  order of  10-" K [21]. Assume 
that the channel length is of  order of  10-' mm, there- 
fore, the characteristic temperature-difference in the 
present analysis is AT~ = r~,,H ~ O(I K), the 
rotational speed w is 10000 r.p.m., and the fluid prop- 

erties are evaluated at the temperature 500 K 
( ~ 1000 F) as the coolant air temperature mentioned 
in a previous paper [I 1]. Therefore, magnitudes of  the 
parameters are, Pr = 0.699 "- 0.7, Ro ~ 0.028, 
E c * ~  1.40×10 ~, G , , ,~0415  and Ra,, ,~415.  The 
transpiration velocity V,, is assumed as I,',, <~ 10 ~ U, 
and, therefore, Re,, ~ 10. 

In the present study the ranges of  the parameters. 
based on the above discussion, are 

P r =  0.7, Re,,r ~ 0 ( I ) - 0 ( 1 0 ) ,  

R o ~  O(10 2), Ra,, ~ O(10 -~) O(10~), 

G , , ,~O(10  It, E c * ~ O ( 1 0  J). (26~ 
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N U M E R I C A L  P R O C E D U R E  

In the present study, a standard fourth-order 
Runge Kutta scheme with Newton's  correction tech- 
nique is employed. The step-size is 0.01 in the course 
of computations. More refined step-size of 0.005 is 
used for determination of flow-reversal locations. As 
the wall transpiration Reynolds number Re,, increases 
the problem becomes very stiff. The numerical pro- 
cedure converges very slowly and, in some extreme 
cases, the procedure may even diverge. To improve 
the convergence characteristics, Aitkin acceleration 
technique and relaxation factor are used for iteration, 
and a second-order continuation is applied for the 
continuous computations with increasing Reynolds 
number Re~. 

2_0 

Analyt ic  solutions with Re,,, = Ec* = 0 
Equations for both classes 1 and 2 contain non- 

linear terms. In general, they can be solved by the 

numerical methods, for example a typical shooting 
method described in the previous work [I 3]. However, 
an analytic solution is possible in some circumstances 
of class I. Combining equations (15) and (16) one has 

f '  - R a , , , ( l - G , , , ) . / "  = - -Ec*  Ra,,,(./")'-. (27) 

The corresponding five boundary conditions are 

I ( 0 )  = I ' ( 0 )  = I (  l ) - t = I " (  I ) = 0 

and 

E I' ./'"(0) = Ra,., 3 - ( I - G , . , )  .~'dr 
) 

R E S U L T S  A N D  D I S C U S S I O N  
Due to the presence o1" the nonlinear viscous 

dissipation term, Ec* R~t,,,(./") 2. equation (27) is not 
tractable analytically. By neglecting the viscous 
dissipation effect, equation (27) becomes 

1.6 

. . . .  i . . . .  

O l  

0_3 

f, 1.2 

0_8 

0_4 

0 . 5 0 ~  

0.4.0t Raw =200 G~= 0.1 _ 

0.30 0,5 

0.20 

0_10 

0.00 

-0.10 0 . 0  i i l L I i i i i 

0.0 0 5 1.0 0_0 0.5 1.0 

(a) Y 

1.6 . . . . .  0,05 

1.2 

f' 

0 . 8  

0.4 

0.00 

0.05 

0.I0 

, , ' ' I , , ' ' I 

0 . 1 5  

0_10 

5 = 0  
G~ = 0.1, 

i i 0.0 t ~ ' ' ' 0.15 ' 

0_0 0.5 1.0 0.0 

, , , , i , , , , 

,,.;- o5OO/! 

\ \",qy// 

, E~= 0 

' ' 0 1 5 '  ' ' 1 .0  

Y (b) Y 

FIG. 2. Viscous dissipation effect in solid-walled channel: (a) buoyancy-opposed flows: (b) buoyancy- 
assisted flows. 
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.I" - Ra,.,( I - G,.,). I" = 0 

o r  

.l.i, _ Ra,,,(1 -- G., ) / =  l "  (0). (29) 

The solutions with 0 ~< G,,, < I tire different for the 
cases Ra,, = 0. > 0  and < 0  corresponding physically 
to the pure forced convection, buoyancy-opposed and 
buoyancy-assisted mixed convection, respectively. 
The analytical solution of  equation (29) listed in the 
Appendix is an extension of  the analytical solution in 
ref. [I 3] with the consideration of compression work. 
By setting G,, = 0, the solutions reduce to the closed- 
form solutions in ref. [13]. 

I "elocit.v and  t empera ture  prqh les  
To make the viscous dissipation effect clear, the 

solutions with exaggerated values of Ec* (O - 10 ') 
are calculated. Figure 2(a) shows the viscous dis- 
sipation effect on velocity and temperature dis- 

tributions in outward buoyancy-assisted flows. Due 
to internal viscous heating, the fluid temperature is 
raised, the wall-to-fluid temperature difference is 
decreased, and therefore, the buoyancy effect is sup- 
pressed. However, because of the cxistencc of  the 
strong forced flow. the distortion of  velocity ficld is 
relatively smaller than the change of  fluid tempera- 
ture, This phenomenon is also presented in inward 
buoyancy-opposed flows in Fig. 2(b). The viscous 
heating increases the fluid temperature and the vel- 
ocity near v = 0.5. A similar effect for compression 
work can be observed in Fig. 3(a) for the buoyancy- 
opposed flows and Fig. 3(b) for the buoyancy-assisted 
flows. 

Figure 4 reveals the compression work effect on 
the velocity and temperature distributions with wall- 
transpiration. Figure 4(a) shows a typical buoyancy- 
opposed flow in which fluid temperature can be heated 
due to the internal heating caused by the compression 

2 5  . . . . . . . . .  o o o  

G w 0. i i 

2 .0  ~- "] - 0 . 0 5  Gw 

1.5 g " 

f'  -O.lO 

1.o 

- 0 . 1 5  
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Fio. 3. Compression work effecl in solid-walled channel: (a) buoyancy-opposed flows; (b) buoyancy- 
assJsled flows. 
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Ftu. 4. Compression work effect in semiporous-walled channel: (a) buoyancy-opposed flows ; (b) buoyancy- 
assisted flows. 

work. The internal heat ing reduces the velocity near 
r =  0.7. Whilc in the buoyancy-assis ted flows, the 
compression work tends to accelerate the fluid near 
v =  0.5 and flatten the double-peak velocity profiles 
as shown in Fig. 4(b). 

Figure 5 shows the buoyancy-assis ted flows with 
asymmetr ic  wall-heat ing and coupled effect of  buoy- 
ancy and stress work. In this figure, the fluid near the 
two walls will not be retarded or accelerated in the 
same manner .  The temperature  profiles have very high 
gradients  and the velocity profiles have high peaks 
near the porous  wall ( y =  l). Therefore,  there is a 
s t ronger  buoyancy-assis t ing effect than that  near  the 
solid-wall. If the velocity peak near the porous  wall 
grows fur ther  and, due to the global cont inui ty ,  the 
velocity peak near the solid wall must  be flattened. 
Most  of  the main  flow moves radially near  the porous  
wall. While the fluid near the solid wall is a lmost  
s tagnant  and  the tempera ture  of  fluid there tends to 
be uniform. It can be expected that  the heat  t ransfer  
is poor  at the solid wall. 

How and heal Iran,yfer parameters 
Withou t  the considera t ion of  the stress work [13], 

the buoyancy-assis t ing effect can enhance  the heat  
t ransfer  but  with the penalty of  higher friction and 
pressure loss. On the contrary ,  the buoyancy-oppos-  
ing effect reduces the skin-frict ion and pressure-drop 
as well as the heat t ransfer  rate. To exanaine the stress 
work effects on Cr Re,., H, and Nu, results for 
Re,, = 6 = 0 are plot ted in Fig. 6. F rom the discussion 
in the last section one can easily conclude that  the 
stress effects reduce the tempera ture  gradient  O0/Sv at 
walls for both buoyancy-assisted and opposed flows. 
In buoyancy-assis ted flows, the stress work effects 
decelerate fluid velocity near the walls as shown in Fig. 
3(b), and reduce the heat  t ransfer  rate. In buoyancy-  
opposed flows (Ra,,, > 0), the fluid near the walls is 
accelerated as shown in Fig. 3(a). The resul tant  heat  
t ransfer  per formance  depends on the resultant  effect 
of  the two counter  factors, that  is, reduct ion of  
(O0/(3y),,. and increase of  fluid velocity near the wall 
region. To provide clear compar i sons  between the 
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FIG. 6. Flow and heat transfer parameters of  mixed con- 
vection in radially rotating channel with buoyancy and stress 

work effects. 

d a t a  wi th  v a r i o u s  s t ress  w o r k  effects,  T a b l e  2 lists the 

N u s s c l t  n u m b e r s  For Re,, = 6 = 0. It is obse rved  tha t  

For Ra,,, > 0. N u s s e l t  n u m b e r s  for  cases  2 and  3 are  

sma l l e r  t h a n  the base l ine  case  I ; while  in cases  4 a n d  

5. the  va lues  o f  Nu are  larger  t han  those  for  case  I. 

H o w e v e r .  for  the  case  o f  Ra,, < 0, N u s s e l t  n u m b e r s  

arc  all r educed  by the s t ress  work  effects.  Tab l e  3 

s h o w s  the  s t ress  w o r k  effects on  the sk in  fr ic t ion par -  

ame te r s ,  the  N u s s e l t  n u m b e r s  and  the  b o u n d a r y  

de r iva t ives  g'(O),  .q'(1), 1"(0) ,  a n d  f " ( I )  for  s o m e  

cases.  D u e  to the  def in i t ion  o f  N u  s h o w n  in e q u a t i o n  

(23) the s t ress  w o r k  effects on  the  N u s s e l t  n u m b e r s  

seem to be smal l ,  howeve r ,  the  va lues  o f  t e m p e r a t u r e  

Table 2. Stress work effects on Nu ['or Re,, = 6 = 0 

NIl 
Ra,., Case 1 Case 2 Case 3 Case 4 Case 5 

500 6.9836 6.9666 6.9471 7.1147 7.0669 
400 7.2433 7.2198 7.1953 7.3455 7.2870 
300 7.4976 7.5682 7.4379 7.5731 7.5023 
200 7.7477 7.7115 7.6745 7.7973 7.7125 
100 7.9937 7.9497 7.9051 8.0180 7.9[76 

0 8.2353 8.1827 8.1295 8.2353 8.1176 
- 500 9_3766 9.2670 9.1567 9.2675 9.0379 

- 1 0 0 0  10.4069 10.2200 10.0315 10.2095 9.8299 
- 2 0 0 0  12.1615 11.7770 11.3894 11.8405 11.0773 
- 3 0 0 0  13.5769 12.9644 12.3488 13.1829 11.9731 
- 4 0 0 0  14.7341 13.8828 13.0302 14.2977 12.6162 
- 5 0 0 0  15.6983 14.6069 13.5168 15.2370 13.0777 
- 6 0 0 0  16.5177 15.1887 13.8639 16.0412 13.4067 

Note : E c *  a , , j  

Case I 0.000 0.0 
Case 2 0.001 0.0 
Case 3 0.002 0.0 
Case 4 0.000 0.1 
Case 5 0.002 0. I 
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Table 3. Stress work effects on 

C,,,, C~-~,, Nu,,, Nut,  , f " (O)  

flow alld heat  I ransfcr  parameters 

/"(11 ,q'(O) g ' ( l )  

Re~ = 0, Rt~,, = 500, a = 0. G,, = 0 
f c  * 

0.000 0.0152 0 . 0 1 5 2  3 .4925  3 . 4 9 2 5  (I.0076 - 0.0076 - 0.5000 0.5000 
0.001 0.1683 0 . 1 6 8 3  3 .4833  3 . 4 8 3 3  0 . 0 8 4 2  -00842 -0.4912 0.4912 
0.002 0.3184 ( I . 3184  3 .4735  3 . 4 7 3 5  0 . 1 5 9 2  -0.1592 -0.4824 0.4824 
0.003 0.4656 0 . 4 6 5 6  3 .4633  3 . 4 6 3 3  0 . 2 3 2 8  -0.2328 -0.4739 0.4739 
0.004 0.6100 0 . 6 1 0 0  3 .4527  3 . 4 5 2 7  0 . 3 0 5 0  -0.3050 -0.4654 0.4654 
0005 0.7517 0 . 7 5 1 7  3 .4415  3 . 4 4 1 5  0 . 3 7 5 8  -0.3758 -0.4570 0.4570 

Re,, = O. Ra,, = 500, ~'~ = 0, Ec* = 0 

0.00 00152 0 . 0 1 5 2  3 .4925  3 . 4 9 2 5  0 . 0 0 7 6  -0.0076 -0.5000 0.5000 
0.10 1.3431 1.3431 3 .5573  3 . 5 5 7 3  ( I . 6 7 1 6  -0.6716 -0.4500 (I.4500 
0.20 2 6 3 9 0  2 . 6 3 9 0  3 .6217  3.62[7 1.3195 - 1.3195 -0.40(10 0.4000 
0.30 3.9041 3.9041 3 .6855  3.6855 1.9520 - [.952(I -0.3500 0.3500 
0.40 5.1398 5.1398 3 7488 3.7488 2 5699 - 2.5699 - 0.3000 0.3000 
0.50 6.3473 6 3473 3 .8116  3 . 8 1 1 6  3 . 1 7 3 6  -3.1736 -0.2500 0.2500 

Re,, = 5. Rtl,., = -- 1000. 6 = 0. Ec* = 0 
G,, 

0 . 0 0  4 5 . 5 6 1 2  41 .7405  5 .4292  8 . 0 0 0 [  2 2 . 7 8 0 6  -20.8702 -0.8444 1.2443 
0.10 4 3 . 3 2 4 4  39 .6327  5 .2773  7 .9169  21.6622 - 19.8164 -0.7668 1.1503 
0 . 2 0  4(I .9II)7 37 .4685  5 .1154  7 .8 3 5 0  20.4554 - 18 7 3 4 3  -0.6877 1.0534 
0.30 3 8 . 2 8 8 5  35 .2555 4 . 9 4 1 9  7 . 7 5 4 6  19.1443 - 17.6277 -0.6073 0.9529 
0 . 4 0  3 5 . 4 1 7 6  33 .0065  4 .7547  7 .6 7 6 3  17.7088 - 16.5032 -0.5253 0.8481 
0.50 3 2 . 2 4 6 0  30 .7418 4 .5515  7 .5 9 9 8  16.[230 - 15.3709 -0.4418 0.7377 

gradients g'(0) and g'(1 ) at walls explain morc clearly 
the heat transfer rates at walls and these can be altered 
remarkably by the effect of  compression work. 

Flow-re t ,ersa]  a n d  cr i t i ca l  con d i l t on s  

In the present radially rotating channels, the flow- 

reversal can be induced by the centrifugal-buoyancy 
and wall-transpiration. Since the buoyancy effect 
depends strongly upon the temperaturc held, the wall- 

heating (6) and the stress work (E c* ,  G,,)  effects are 
also the influential factors for the threshold of  flow- 
reversal. Two modes, wall-flow-reversal (WFR)  and 
in-field flow-reversal (IFR),  are presented. The former 
reveals a one-peak velocity distr ibution as that shown 
in Fig. 4(at and the latter possesses a double-peak 
velocity profile as shown in Figs. 4(b) and 5. The 
general feature of  the critical condit ions for the two 
modes has been discussed in ref. [I 3]. 

Figure 7 shows the stress work effects on the flow- 
reversal condit ion for class I. Due to the internal 
heating caused by the stress work. the flow-reversal 
usually can be postponed and the flow-reversal-frce 
(FRF)  region in the critical parameter  map is 
enlarged. The effects are not noticeable in the cases 
with low Rayleigh number.  From equations (28), it is 
very clear that the viscous dissipation effect can alter 

the flow field through the nonlinear term -Ec*( f" )~- .  
Since Ec*  is typically of  order of  10 -3, this effect can 
be pronounced only at large values of  Ra,.,. As for the 

compression work effect, cases with G,, = 0_1 were 
considered. The corresponding term is Ra, , (  1 - G , , , ) f '  

in equation (28) or (30). It is found that the effect is 
significant also at large Ra, , .  

In the presence of  wall-transpiration the flow-rever- 

sal mechanism becomcs coupled and complicated. 
The symmetry of the parameter  map displayed in Fig. 
7 is destroyed. The compression work effect on the 
critical condition of flow-reversal in buoyancy- 
opposed and -assisted flows are shown in Figs. 8(a) 
and (b), respectively. Since the effect may suppress the 
buoyancy effect, it is expected that the F R F  region 
can also be expanded in both the buoyancy-assisted 
and buoyancy-opposed flows. 
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FIG. 7. Critical parameter map with stress work effects : FR, 
flow-reversal; FRF, flow-reversal-free. 
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ancy-opposcd flows: (b) buoyancy-assisted flows 

C O N C L U D I N G  R E M A R K S  

The simihtrity solution has been obtained to analyze 
the mixed convection in radially rotating channels. In 
the simple theoretical model many significant results, 
that is, the velocity and temperature distributions, 
flow and heat transfer characteristics with the effects 
of  wall-transpiration, centrifugal-buoyancy and. 
especially, the strcss work effects are addressed. Thc 
thrcshold of  flow-reversal in the radially rotating 
channels are also included. It is believed that this 
solution is valuable for the understanding of  the non- 
isothermal rotating flows. 

In class 2, that is, one-side porous-walled channcl,  
the similarity model is restricted only to the cases with 

Ec* = 0. In buoyancy-assisted flows, the stress work 
effects can always reduce the heat transfcr;  however, 
in buoyancy-opposed ones, the heat transfer rate may 
be enhanced or reduced under different conditions.  
Flow-reversal phenomena  can be induced by the 
buoyancy and wall-transpiration effects. Two modes, 
W F R  and IFR, are possible depending on the different 

wall-heating conditions. The stress work generates the 
internal heating effect and reduce the buoyancy effect. 

Thercfore, they can delay the flow-rcversal by the 
centrifngal-buoyancy effect. The effects are more 
noticeablc at large Rayleigh numbers. 
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A P P E N D I X :  A N A L Y T I C  S O L U T I O N S  F O R  
Re, . ,  = E c "  = 0 

(1) Ra,, = 0 (forced convect ion) : 

/ ( y )  = 3y: - 2y'  (A I) 

= I t ,  4 g(y) [ 5 -  ~(I-G,,,)]y +(I- -G, , ) (y~-=_ ). (A2) 

(2) Ra,., > 0 (buoyancy-opposed mixed convection) : 

l (y )  = C~ + Cz sinh K v +  C cosh K y +  C4 sin/x~r 

+ C~ cos /~r  (A3) 

I 
f l (y)  = ~ r +  K ( I - G , ,  {C: [ (cosh h~v+cosA:r)  

- y ( c o s h  K +  cos K) - 2( I - y ) ]  

+ (",(sinh K v -  r" sinh K) + C~(sin/x~v y-  sin K)', 

(A4) 

where, by defining 5" = 6/(I - G , , )  

I 
C~ = Ai { ] s i n h K ( I - c ° s K )  

- KS*[sin K" sinh K - ( 1  + cos K)(cosh K -  I ) ] I  

I 
C4 = A~ {K6* [s inhK(cosK- [ )  

+ sin K(cosh K -  I )] - 2 sin K sinh K] 

C~ = C4(cosh K--COS K)/sinh K +  (-'~ sin Kr'sinh K; 

C, = - C 4 ;  Ci = - C ~ - C ~ ;  

A~ = - 4 [ s i n h K ( l - c o s K ) - s i n K ( c o s h K - I ) ] ;  

K = IRa,,( I -  G,.,)] I'~ 

(3) Ra,., < 0 (buoyancy-assisted mixed convect ion):  

f " ( 0 )  . 
. l(.v) = ~ a  ~ sm ay '  sinh a r  

f '"(7 ) (sin . + 4a a.r • cosh a y -  cos a.v • sinh av) 

/ " ( 0 )  
+ " 4 o  a ( [  - - c o s ~ / ) " c o s h u y )  

/ " (0  
.q(y) = 6 y -  " 4a [sin ay.  cosh a y -  cos ay 

• s i n h a l ' - r ( k ,  k , ) ] -  / " ' ( 1 ) ) [ l - c o s a v  
. . . .  4 z l  

/ "  (0) 
• c o s h u v - . v ( I - k , ) ] +  8a" [s inav 

• c o s h a v - c o s a v - s i n h m ' - v k , + k ~ ) ]  

where 

] 
/" (0)  = A~ [ S a " 5 * ( k : - k ~ ) ' - - S a S k ~ ( k :  +k, )  

I 
. I " ' (0) = 

A-  

(A5) 

(A6) 

- S a ~ ( I  - k 4 ) ( k z - k , )  - 1 6 a t ' 5 * k ~ ( l  - k 4 ) ]  ; 

[Sa"(k,_ - k  ~): + 16u-6"( I - k D ( k , _ + k , )  

+ 8a"(k_, +kO:  - 16aZf*k~(kz - k s } ]  ; 

I" ' (0)  = A. [16"7(1 - / ' ~  ( k = + k , )  +32a"5*k i  

- 16aSS*lki - / . ~ )  - 16aTk. (k= - k ~  )] ; 

A~ = 2 a 3 i k : - k s ) 3 + 4 a ~ ( l  -kD=l/,-_~+k~) 

- 4 . ~ k ~ ( k : + k , ) +  2u~(k:+h~)(h i -k~)  

- 8u~/,l( I - k D ( k : - k d :  

/,-, = s i n a ' s i n h a ;  k,  = s i n a ' c o s h a ;  

k~ = c o s a ' s i n h a ;  k 4 =cOS¢l 'cOsht ; :  

a = [ -  Ra,.,( [ -G,.,)/4] I 4. 


