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Abstract—The ellects of stress work on similarity solutions of mixed convection in radially rotating
channels with wall-transpiration are dealt with. Imposing proper geomelric limilations, conslant wall-
transpiration, and linear wall-temperature distribution, similarity equations for two classes ol rotating
channel Nows are developed : (1) effects of viscous dissipation and compression work on mixed convection
in a rotating solid-walled channel. and (2) the effect of compression work on mixed conveclion in a rotating
semiporous-walled channel with transpiration. Flow and heal transler characleristics with the eflects of
the centrifugal-buoyancy, Coriolis force, wall-transpiration, viscous dissipation and compression work ure
discussed in the similarity solutions. The present study gives a belter understanding of the complex mixed
convection problem.

INTRODUCTION

ROTATING channel flow and heal transfler are closely
related to convective heal transfer in thermal systems
such as gas turbines and rotating electrical machinery.
It is also attractive academically due to the complexitly
in flow structure under the influence of rotation. In the
literature the effects of Coriolis-induced secondary flow
and centriflugal-buoyancy on conveclive heat transler
have been studied exlensively, e.g. theoretical analyses
[1. 2], numerical studies {3, 4] and experimental inves-
tigations [5-9]. Furthermore, if the wall-transpiration
effect is considered, more complexities could be intro-
duced, and only a few two-dimensional sludies are
available for this type of flow. Since Lhe typical tran-
spiration cooling channels are of low cross-seclional
aspect-ratios [10, 11], a two-dimensional analysis is
proper for understanding of the convection mechan-
ism. Epifanov er al. [12] carried out an inlegral analy-
sis Lo determine the forced convection heal transfer
rate. Soong and Hwang [13] performed a theoretical
analysis on mixed convection and flow-reversal in
rotaling semiporous-walled channels without stress
work.

In a rotating thermal system, high rotation rate may
induce significant Coriolis and centrifugal-buoyancy
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forces, and stress works including viscous dissipation
and compression work. The stress works have been
considered in nalural conveclion [14-16] and mixed
convection [17-19] in gravitational force field. In a
rolating disk system, Chew [20] has also advocated
the significance of the stress works. To the authors’
best knowledge, mixed conveclion with stress work
cffects in radially rotating channels has not been
reporled yet.

By considering the effects of stress works, the pre-
vious analysis [13] is [urther extended in the present
study. A theoretical model is proposed for studying
the rotation-induced buoyancy, wall-transpiration
and especially, the stress work effects. Assuming a
large semi-span eccentricity and slenderness of the
channel, and imposing the thermal boundary con-
dition of a constant wall-temperature gradient, simi-
larity equations for two classes of flow configurations
are rigorously developed. They are: (1) mixed con-
vection with both compression work and viscous dis-
sipation in a radially rotating solid-walled channel;
and (2) mixed convection with compression work
effect in a one-sided porous-walled channel. The simi-
larity equations are solved and the effects of rotation,
transpiration, and stress works on the hydrodynamic
and thermal characteristics are examined. A closed-
form analytical solution can be found readily for some
solid-walled channel flows. Flow-reversal can be
induced by wall-transpiration and buoyancy effects.
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C, skin [riction coefhicient

conslant pressure specific heat

Ec Eckert number, U/;/c,AT

reduced Eckert number. Ec¢/Re

/ dimensionless stream [unction or

Lransversc velocity, ViV,

rolational G-number, (X.w ) H/c, AT

g dimensionless lemperature,
(T—T..)(PeAT.u,)

H channel height

h heat transfer coefficient

k thermal conductivity

L channel length

Nu Nusselt number. hH [k

P pressure

P reduced pressurc,

P+ (pw’ /DX £ X,)"+ V7]

dimensional and dimensionless pressure

departure. p’ = P'/p, Uj

Pe Peclet number, Pr Re

Pr Prandtl number, v/x

R position veclor emanating [rom rotalion
center

Ra,, rolational Rayleigh number,
(X.wBAT.H Pr)fv’

Re main flow Reynolds number, U,H/v

Re.  Reynolds number based on local mean
velocity. U, H/v

Re,  wall suction Reynolds number, V, H/v

Ro rolation number, wH/U,

T lemperalure

AT, characteristic temperature difference

U, V velocity components

U, mean velocity at X =0

NOMENCLATURE

dimensional and dimensionless local
mean velocity, U, (X) = Uy,
u. v dimensionless velocity components,

U/Uyand V/U,

X. ¥ Cartesian coordinates
x.y dimensionless coordinaltes, X/H and Y/H
X,. x, dimensional and dimensionless semi-
span cccentricily, X, = Hx,.

Uni. th,

Greek symbols

% thermal diffusivity

f thermal expansion cocfficicnt

d dimensionless wall temperature
difference, (T,.— T.,)/(Pe AT u,,)

o* wall temperature difference parameter,
o/(1-G,)

0 dimensionless lemperalture difference.
(T—T,)/AT.

i viscosity

v kinematic viscosity

1 pressurc-drop parameter,

_‘.(I)[i_ Rt’\v/P Uri\) X
(CP/CX)+2Ro Re (Uy/U,L) fdy

P density
T solid wall temperalure gradient
¢ viscous dissipation function
1/ stream [unction
w rotalion speed.
Subscripts
cr critical condition
m mean
pw  porous wall
r reference condition
SW solid wall
m rolation condition.

The effects of stress work on the threshold of the flow-
reversal are also studied.

THEORETICAL ANALYSIS

Flow configuration and governing equations

Figure | shows a channel consisting of two parallel
walls, one solid and the olher porous, separated by a
spacing H and rolaling at a speed » aboul an axis
perpendicular to the axis of the channel. The axis of
rotation lies at a distance X, away from the channel
entrance. The main stream flows along the channel
axis and bleeds out through the porous-wall at a tran-
spiration velocity V,,(X). The main stream may flow
radially outward or inward, as shown in Figs. 1(a) and
(b), respectively. In the analysis, the low 1s assumed to
be laminar and steady, and the compression work and
viscous dissipation are considered. Since Lhe buoyancy
effect becomes significant in the presence of the high

centrifugal acceleration, Boussinesq's approximation
is invoked to allow for a linear variation ofl density
with temperature in the centrifugal force term. Gravita-
tional effect in this problem is relatively small and can
be neglected.

Subject to the above assumptions, the con-
servalions ol mass, momentum and energy in veclor
form are depicted as follows:

V=0 (1)

(V-V)V = W3V —VP'[p+P(T—T,)(wx o xR)
=2wxV (2)
(V-V)T =aV T+ V-VP/pc,+ ud/pc, (3)

where the subscript r denotes the condition al origin
(0, 0) and 1s used as the reference condition,
P’ = P— P, the pressure departure [rom the reference
condition, R the posilion vector emanating [rom the
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(a) Radially outward flow,

R=@+X,)T+Y]

Ve = constant
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(b) Radially inward flow, R = (X-X_ )1+ Y]

F1G. 1. Physical conliguration and coordinate syslem.

rolation center and ¢ = 2[(FU/EX )Y +(CVIEY )]+
(CUIRY+EVICX)? the dissipation function.
Assuming the channel is very slender and the axial
velocity U is much larger than thal of the transverse
velocily V, only the term (¢U/¢Y)? in ¢ remains. The
radial direction hydrostatic pressure distribution is
P. = Py+(1/2)p(X+ Xy)’w’. The term V:VP means
the work done per unit time per unit volume. Fur-
thermore. by substituting the pressure distnbution
into V¥+-VP one has approximately U:p(X+
Xy)w™. This means the work is done by the producl
of radial velocity and weight of air per unit volume.
It is noled that the weight ol air may become ex-
tremely large due to Lhe high speed rotation. There-
fore, the compression work term can be written as

V-VPipc,= (1/pc,)UBP JEX =0 (X £ X,)Ufc,.

P

Finally, the governing cqualions can be written in
dimensionless [orms as

fu o
s+ =0 4)
éx Oy
cu  cu 1 _, Cp
U +v—=—Vu—
ox oy T Re M o
Ra, (x£x, 0+9R 5)
_ =0 IRoT
Pe Re\  x, et
ov or | ip’
vW—+vi—=-— Vr— =z
X ¢y  Re ay
Ra, (v 0—2R 6
— - —)0-2Ro
Pe Re \ x, o )

0

U +i
cx

0 1. x+x, cu |
: = VO+G, — u+E*| - |: (D
Pe X, oy

5 =

by using the transformations

u=UU,, v=V/U,, x=X/H, y=Y/H,

p = Plp.Us 0= (T—T,)AT..

Re = U,H/v, Pe= PrRe, Ro=wH/|U,,

Ra,, = (X.w BAT.H* Pr)jv:.

G, = (chz)H/c',,ATc. Ec = Uf,/(‘,,ATC.

Ec* = Ec/Re

where U, is the mean velocity at X =0, T, = T,(0)
the solid-wall temperature at X =0 and AT, the
characteristic lemperature difference to be determined
later. The boundary conditions al the sohd wall,
y=0,arcu=r=0-0,(x)=0;: and at the poi'ous
wall, =1, are u = v —r, = 0—0,,(x) = 0. in which
the subscripts sw and pw denote the solid and porous
wall, respectively.

Similarity transformation and equations

In this flow configuration, it is expected that the
condition of fully-developed flow is not the same as
that of the conventional internal flows, that is
Cu/éx = v = ¢0/cx = 0. Since the fluid bleeds out
through the porous wall at a rate of p¥, (X)) per unitl
area, the mass balance along the channel length is

1)

pUL(X)Hb = PUpo—bJ pV.(v)dX,
1]

0
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where A is Lthe channel depth, or in a dimensionless
form:

U (x) = 1= f ry(x) dx (8)
0

for a constant density p. The mean velocity u,, (x) will
be used as a basis for the [ully developed invariant
profile of axial velocity. To develop the similarity
equaltions, the stream function is expressed in a form
of separation of variables, namely

Y, ) =, (X)) 9

where f(y) is an invariant in x-direction and it may
exist under a certain form of transpiration velocily

v (x). By using u = &y/¢y and v = —&y/éx, one has
(X r) = 1, (x) /7(r) and ey, 1) = —un () /(1)
(10)

where * denotes the differentiation. Combining equa-
tions (5) and (6) onc obtains

S Reuy (1" =1 ") +2 <”“‘),/'”

m

Ra,, | x*xx, v
S 0,— - 0.1 (1
Peu, |: X X, ‘] (h

© c

It is obvious that, Lo altain a similarity form of
equation (11), the least demand flor the temperature
function is 8(x,y) = fn(x)+const - u,(x)-g(»), where
fn{x) is a certain function of x. For convenience,
define

O0(x, v) = 0, (x)+ Peu, (x)g(r) (12)

where (), (x) 1s a prescribed solid-wall (emperature
distribution. and ¢(») the x-invariant temperalure
function. With the aid of equation (12) momentum
equation (11) and energy equation (7) become

. S o un\ .,
ST+ Reuw (S =TS )+3<“>f

m

Uptim \ . U
—Re <u;;,'— — )+ =/
lll“ ul'“

" C g U p Xt .,
g + Pe “m(_/.q _/ ‘])+ Zig = 05“ _Gm - f

m

1

iy 2 osw
—Ec*u, (f") = 5=

" Pew,” 1Y

The two [functions r,(x) and 0,(x) are to be
determined by salisfying certain restriclions. For
simplicity, the following assumplions are employed :

(1) The wall-transpiration velocily is constant, that
is, u,,(x) = —r, = constanl and u;, = 1, = 0.

(2) Ratios of channel length to semispan cccen-
tricity and channel height to fength are sufficiently
small, that 1s L/X, and H/L « 1. Consider. for
example, a lurbine disk of radius 350 mm, and turbine
blades of span 80 mm. the hydraulic diameter of
cooling channelis ol order of | mm. Then, refcrring lo
Fig. 1, onc has the approximations: (x +.x,)/x. = + 1,
vix. <« L and 0.> 0. Thus. the r.h.s. ol equation (13)
reduces Lo + Ra,,-¢'. and Lhe parenthesis on the r.h.s.
ol (14} reduces to (0, —G.,,).

(3) The viscous dissipation lerm in cquation (14),
Ec* u,(x)( /™). can be x-independent only il u,, is a
constant, that is. in the case of solid-walled channel
or zero-transpiration (u,, = 1). Otherwisc, this term
musl be neglected by assuming the small viscous dis-
sipation eflect.

(4) The sohd-wall temperaturc-gradient 1s con-
stant. that is. ., (x) = constant. Thercflore,
withoul loss of generality. specily 0, =1 or
T.(x) =T, (0)+AT.x. The characleristic tem-
perature difference can now be determined as
AT. =1 H, in which 7, is a prescribed solid-wall
lemperature gradient. The function g( y') becomes

L T ) = Ty)
9 = Peu,t  H

m b

At the porous wall. y = 1, wall temperalure can be
specified as g(1) = [T, (x) = T (0))/[Pe u, 1, H] = 3
or, in other words, T, (x) = T, (x) 40 Pe u, 1 H. Il
T..(x) and u,,(x) are both linear in x. the porous-wall
lemperature 7, (x) is also a linear one. The parameler
d represents the temperature difference belween the
solid and the porous walls and, therelore, it is also an
index of asymmelric wall healing.

As listed in Table | four possible cases for the
present configuration can be classified inlo two cale-
gories, Lhe buoyancy-opposed mixed convection with
Ra,,(x+x,)/x. > 0 and buoyancy-assisted one with
Ra,,(x £ x,)/x. < 0. To unily the equation of motion,
the sign of (x+x,)/x. (= +1) can be absorbed into
the parameter Ra,,. The positive Ra, is respon-
sible for the case of buoyancy-opposed Aow and
the negative Ra,, stands lor the case of buoyancy-
assisted Aow.

With assumptions (1)-(4), two sets ol similarily
equalions can be attained from cquations (13) and
(14):

Class | : mixed convection with stress work effects in
a rolating solid-walled channel, that is, Re, =0 (or
u,=1).G,=0and Ec* >0

“w

(15)
(16)

/" = Rag
g' = (1=G.) [ —Ec(/")".

Class 2 : mixed convection with effects of transpiration
and compression work

S =Re (f" /") = Ra, g’ (17)
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Main flow Solid wall (x+x,)/x,
oulward hot =41
oulward cold =+1

inward hot =1
inward cold = -1
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Table 1. Possible situations of the present low configuration

Type of

T Ra,, (x+x,)/x. mixed conveclion
>0 >0 opposed
<0 <0 assisled
>0 <0 assisted
<) >0 opposed

g =PrRe(fg'—/"g)=(1=G)f"  (I8)

where Re,, = I, H/vis wall-suction Reynolds number.
The boundary conditions [or both of the classes | and
2are:

SOy =10y =f(1)-1=,70)=0

4(0) = g(1)=3 = 0. (19)
Flow and heat rransfer parameters
Following the conventional definition
Cr = 2u(cU[CY ) [pUL(X) (20)

the skin [riction coeflicients for solid and porous walls
can be cxpressed respeclively as

Cro Re, =2/7(0) and  Cpp Rep, = =2/7(1)
(21
where Re, is the Reynolds number based on the local
mean velocity. U, H/v.
By using a reduced pressure P = P+ (pw?/2) x
[((X+X,) '+ Y] and the X-momenlum equation, the
pressure-drop can be characterized by a cross-sec-

Llional average ol a combined pressure drop involving
the Coriolis effect [11. 19]

n : R(‘\ cP 12R0R L/n / d
= — PO 2Ro Re,, - ’
0 pUL\Cx RN/ A

= —_/"”(0)—Ra'_.,j g(rydr. (22)

0

The heat transfer rate is characterized by the
Nussclt number

Nu=hHlk = —(°TJOY)HUT. —Ts)  (23)

where

l 4
T, (X) :UHJ‘ urdy
m 0

is the fluid bulk temperature. The resultant Nussell
numbers at solid and porous walls can be written as

f
Mm=d@/ffym (24a)
0

1
Nu,, =_(/’(l)/ <6—J _/"gd_\'). (24b)
0

In the case of Re,, # 0, that is, the solutions ol class

and

(2). the integral in cquation (24) can be evalualed
readily from energy cquation (18):

: . )
rgdr=}

When (ranspiration 1s absent, this integral can bc
evaluated simply by using the analytic solutions of
class 1 for zero-transpiration.

|
*apy pe, 7G0T 9O =g/ (D).

(25)

Governing parameiers

Six non-dimensional groups. Pr. Re.. Ro, Ra,,. G,,
and Ec* are shown in cquations (15)-(18) and (22). Pr
is the PrandU number. and Re, the wall-transpiration
Reynolds number. The rolation number Ro and the
rolational Rayleigh number Ru,, characterize the
Coriolis force and the centrifugal-buoyancy effects.
respectively. It is noted that. for the present
configuration, the Coriolis [orce can only provide
a modification of the hydrostatic pressure field
through the parameter Ro in equations (22).
Stress work parameters the rolational G-number
G., = (X,w)H/c,AT, and the reduced Eckert number
Ec* = Ec/Re = Re- (v/H) [c,AT, indicate the measure
ol the compression work and viscous dissipation,
respeclively.

In the laminar Aow regime the Reynolds number is
of order of 10°, and the channel height is of order of
I mm. The spanwise variation of the turbine blade
temperalure is usually of order of 107 K [21]. Assume
that the channel length is of order ol 10* mm, there-
fore, the characleristic temperalure-difference in the
present analysis 1s AT.=r1,H ~ O(1 K), the
rotational speed w is 10000 r.p.m.. and the fluid prop-
erties are evaluated at the lemperature 500 K
(= 1000 F) as the coolant air temperature mentioned
in a previous paper [11]. Therefore, magnitudes of Lhe
parameters are, Pr=0.699 ~0.7. Ro~ 0.028,
Ec* ~140x10 *, G, ~ 0415 and Ra, ~ 415. The
transpiration velocity ¥, is assumed as V', < 10 * U,
and, therefore, Re, ~ 10.

In the present study the ranges of the paramelers.
based on the above discussion. are

Pr=0.7,

Ro ~ O(107 %),
G, ~ 00 Y,

Re., ~ O(1)-0(10),
Ra,, ~ 0(10%)-0(10%),

Ec* ~ 0(1077). (26)
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NUMERICAL PROCEDURE

In the present study, a standard fourth-order
Runge-Kutta scheme with Newton's correction Llech-
nique is employed. The step-size 1s 0.01 in the course
of computations. More refined step-size of 0.005 is
used [or determination of flow-reversal localions. As
the wall transpiration Reynolds number Re, increases
the problem becomes very stiff. The numerical pro-
cedure converges very slowly and, in some extreme
cases, the procedure may even diverge. To improve
the convergence characteristics, Aitkin acccleration
technique and relaxation factor are used (or ileration,
and a second-order continuation is applied for the
continuous computations with increasing Reynolds
number Re,, .

RESULTS AND DISCUSSION

Analytic solutions with Re,, = Ec* =0
Equations [or both classes | and 2 conlain non-
linear lerms. In general, they can be solved by Lhe

2.0 —————

—————
L - 0.1 i
Ec=0 02
1.6L 0.3 ]
0.4
L 0.5 4
f' 1.2L —
- .
08f B}
| Re,, =0
Ra,, = 200 |
0.4L 5§ =02 i
G,= 01 |
00 " " " PR | L P T
0.0 0.5 1.0
y
1.8 ———
L 0.15 4
0.20 /8.10
.05
1.2} i
Eé=0
£t :
08} N
I Re_=0
04l Ra, = -500 i
§ =0
Gy = 0.1
00 1 ! L 1 1 L 1 1 1
0.0 0.5 1.0
y

g
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numerical methods. for example a Lypical shooting
method described in the previous work [13]. However,
an analytic solution 1s possible in some circumstances
of class |I. Combining equations (15) and (16) one has

/' —Ra,1-G,)f = —Ec*Ra, (/") (27)
The corresponding five boundary conditions are
SO =0 =/-1=/(1)=0

and

1
/"(0) = Ra,, [(5 —(1-G.) j fdr
0

1 V
—Ec* J J Sy d_l'd_l']. (28)
o 0

Due lo the presence of the nonlinear viscous
dissipation lerm, Ec* Ra,(/")". equation (27) is nol
tractable analylically. By neglecting the viscous
dissipalion effect, equation (27) becomes

0.50 ————
Rey=0

=02
0.40t

Ra, =200 G, =

0.30

0.20

0.10

(a) y

005 ——————F————

RS W SR N S T Y S N S T

T T T T T T T T T T T

-0.15 IS U Y G R S U W
0.0 1.0

(b)

F1G. 2. Viscous dissipation eflect in solid-walled channel: (a) buoyancy-opposed flows: (b) buoyancy-
assisted flows.
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S —Ra,1=G,)f =0
or
" = Ra,(1-G,) [ =["(0). (29)

The solutions with 0 € G,, < | arc different for the
cases Ra,, = 0. >0 and <0 corresponding physically
to the purc forced convection, buoyancy-opposed and
buoyancy-assisted mixed conveclion, respectively.
The analylical solulion of equation (29) listed in the
Appendix is an cxtension ol the analylical solution in
rel, [13] with the consideration of compression work.
By sctling G,, = 0. the solutions reduce to the closed-
form solutions in rel. [13].

I'elocity and temperature profiles

To make the viscous dissipation effect clear. the
solutions with cxaggerated values ol Ec* (O ~ 10 ")
are calculated. Figure 2(a) shows (he viscous dis-
sipation cffect on velocily and temperature dis-

25j
[ G, ,01 -~
2oh oz ]
R 03 ]
- 04 -
15[ 0.5 Z
f [ ]
1ol ]
. Rew=0 ]
L Ra., = 500 ]
0.5 W A
r Ec=6=0 :
%
0.0 AR T S S S
0.0 0.5 1.0
y
16 —— o —
¢

1.0
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tributions in outward buoyancy-assisted lows. Due
to internal viscous hcating, the fluid temperature is
raiscd, lhe wall-to-Auid (emperalure difference is
decreased, and therelore, the buoyancy effect is sup-
pressed. However. because of the cxistence of the
strong lorced flow. the distortion of velocily ficld is
relatively smaller than the change of fluid tempera-
ture. This phenomenon is also presented in inward
buoyancy-opposcd flows in Fig. 2(b). The viscous
heating increases the fluid temperature and the vel-
ocity near v = 0.5. A similar effect for compression
work can be observed in Fig. 3(a) for the buoyancy-
opposed flows and Fig. 3(b) for the buoyancy-assisted
fAows.

Figure 4 reveals the compression work eflect on
the velocily and temperature distributions with wall-
transpiratlion. Figure 4(a) shows a Lypical buoyancy-
opposcd flow in which fluid temperature can be heated
due to the internal heating caused by the compression

000 ————+ 1+
"\ Rey =E¢ =6 =0
F Raw = 500 1
—0.05 .
L GGJ 4
g | 0.5 i
r 0.4 1
-0.10 .
L 0.3 J
L 0.2 j
_0.15__ 0-1 —
- 0.0 .
—020b—r v
0.0 0.5 1.0
(a) y
000 4+,
\ Re,, = 5 = i
Ra = —1000
w
-0.04 L Ed = 1
g i 0.5 )
-0.08 | 0.4 4
0.3
i 0.2 b
—0.12 L 01 4
. Gy =0.0 1
_016 L I " " L L 1 n 1 J
0.0 0.5 1.0
(b) y

FIG. 3. Compression work eflect in solid-walled channel: (a) buoyancy-opposed flows; (b) buoyancy-
assisted flows.
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03—
Re, =7 6=03
Ra,, = 30
—0.0 4
g
—-0.3
-0.6
G,=0
—09L v
0.0 0.5 1.0
(a) y
~0.00
\ S
_0.05 O-B -
-0.10 4
0.5
—-0.15}1 4
0.2
—0.20| 0 4
0
—-0.251 J
Re, =5, Ec=0
Rag,=—1000, 6= 0
-030
0.0 0.5 1.0
) y

[116. 4. Compression work eflectl in semiporous-walled channel : (a) buoyancy-opposed flows ; (b) buoyancy-
assisled Aows.

work. The internal heating reduces the velocily near
1 =0.7. While in the buoyancy-assisted flows. the
compression work tends Lo accelerate the fluid near
1y = 0.5 and flatten the double-peak velocity profiles
as shown in Fig. 4(b).

Figure 5 shows Lhe buoyancy-assisted flows with
asymmetric wall-healing and coupled effect of buoy-
ancy and stress work. In this figure, the fluid near the
two walls will nol be retarded or accelerated in the
same manner. The temperature profiles have very high
gradients and the velocily profiles have high peaks
near the porous wall (1= 1). Therelore, Lhere is a
stronger buoyancy-assisting effect than that near the
solid-wall. If the vclocily peak near the porous wall
grows further and, due to the global continuity, the
velocily peak near the solid wall must be flattened.
Most of the main flow moves radially near the porous
wall. While the fluid near the solid wall is almost
stagnant and the temperature of fluid there tends to
be uniform. It can be expected that the heat transler
is poor al the solid wall.

Flow and heat transfer purameters

Withoul the consideration of the stress work [13],
Lhe buoyancy-assisting effect can enhance the heat
transfer bul with the penalty of higher friction and
pressure loss. On the contrary. the buoyancy-oppos-
ing effect reduces the skin-friction and pressure-drop
as well as the heal transfer rate. To examine the stress
work effects on C; Re., Il, and Nu, results for
Re,, = § = 0 are plotted in Fig. 6. From the discussion
in the last section one can easily conclude that the
stress effects reduce the temperature gradient d0/7y at
walls for both buoyancy-assislted and opposed flows.
In buoyancy-assisted flows, the stress work effects
decelerate Auid velocity ncar the walls as shown in Fig.
3(b), and reduce the heat transfer rate. In buoyancy-
opposed flows (Ra,, > 0). the fluid near the walls is
accelerated as shown in Fig. 3(a). The resultant heat
transfer performance depends on Lhe resultant effect
of the two counter [actors, that is, reduction of
(60/0y),, and increase of fluid velocity near the wall
region. To provide clear comparisons between the
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116 5. Compression work effect in semiporous-walled channel with asymmetrical wall-healing.

dala with various stress work effects, Table 2 lists the
Nusselt numbers for Re, = 0 = 0. It 1s observed Lhat
for Ra,, > 0. Nussell numbers for cases 2 and 3 are
smaller than the baseline case | ; while in cases 4 and
S. the values of Nu are larger than those for case 1.
However. lor the case ol Ra,, < 0, Nusselt numbers
arc all reduced by the stress work effects. Table 3
shows the stress work eflects on Lhe skin [riction par-
ameters, the Nussell numbers and the boundary
derivatives ¢’(0), ¢’(1). f"(0). and /"(1) for some
cases. Due to the definition of N« shown in equation
(23) the stress work effects on the Nusselt numbers
seemn Lo bc small. however, the values of lemperature

Table 2. Stress work effects on Nufor Re, =0 =0

200 (— T T T
r G, E& -
a®@ =
160 o ® 00 00 —
L ® ® 0.0 0.001 _
@ 0.0 0.002
120 @ 0.1 00
CiRey | ® 0.1 0.002 |
80 Re,=6=0 4
[ © Flow—Reversal 7
40 —
CtRey = Ct swRex + CrpwRey J
| ] | |
0 — —1— T t—
200 G, E¢
80 (<2 o ® 00 00 -
| ® ® 0.0 0.001
@ 0.0 0.002
80 @ 0.1 0.0 —
[r ® 0.1 0.002
H -
40 | -
| Re,=6=0 ]
20 — o Flow—Reversal -
0 | 1 | | | 1] |
| 1 T 1 1 1T J
re® O Nu = Nug, + Nupy
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o Flow—Reversal
Nu 12 4
d 0.0 0. 4
@ 0.0 0.
8 @ 0.0 0. —
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® 0.1 0.002 T
. L
—-8000 —-8000 —4000 —-2000 0 1000
Ra,,

F1G. 6. Flow and heat transfer parameters of mixed con-
vection in radially rotating channel with buoyancy and stress
work effects.

Nu
Ru,, Case | Case2 Cased Cased CascS
500 69836 69666 69471  7.1147  7.0669
400 7.2433 7.2198 7.1953 7.3455 7.2870
300 74976 75682 74379 7.5731  7.5023
200 7.7477  7.7115  7.6745 7.7973  7.7125
100 7.9937 79497 79051 8.0180 79176
0 82353 8.1827 81295 8.2353 8.1176
=500 93766 9.2670 9.1567 9.2675  9.0379
— 1000 10.4069 10.2200 10.0315 10.2095 9.8299
—2000 121615 11.7770 11.3894 11.8405 11.0773
—3000 13.5769 12.9644 123488 13.1829 11.9731
—4000 14.7341 13.8828 13.0302 14.2977 12.6162
—5000 15.6983 14.6069 13.5168 15.2370 13.0777
—6000 16.5177 151887 13.8639 16.0412 13.4067

Note: Ec* G,

Case | 0.000 0.0

Case 2 0.001 0.0

Case 3 0.002 0.0

Case 4 0.000 0.1

Case 5 0.002 0.1
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Cro Crpe Nu,, Nu,
Re, =0, Ra,=500,6=0.G, =0
Ec*
0.000 0.0152 0.0152 3.4925 3.4925
0.001 0.1683 0.1683 3.4833 3.4833
0.002 0.3184 0.3184 3.4735 3.4735
0.003 0.4656 0.4656 3.4633 3.4633
0.004 0.6100 0.6100 3.4527 34527
0.005 0.7517 0.7517 344158 34415
Re, =0, Ra,=500,0=0, Ec*=0
G,
0.00 0.0152 0.0152 3.4925 3.4925
0.10 1.3431 [.3431 3.5573 3.5573
0.20 2.6390 2.6390 36217 3.6217
0.30 3.9041 3.9041 31.6855 3.6855
0.40 5.1398 5.1398 37488 3.7488
0.50 6.3473 63473 38116 18l16
Re, = 5. Ra,,= —1000.6 = 0. Ec* =
G,
0.00 45.5612 41.7405 5.4292 8.0001
0.10 433244 39.6327 5.2773 79169
0.20 40.9107 37.4685 5.1154 7.8350
0.30 38.2885 35.2555 49419 7.7546
0.40 354176 33.0065 4.7547 7.6763
0.50 32.2460 30.7418 4.5515 7.5998

Table 3. Stress work effects on low and heat transler paramelters

C. Y. SooNG and G. J. HWANG

g'(h

1 g'(0)

10
0.0076 —0.0076 —0.5000 0.5000
0.0842 —0.0842 —0.4912 0.4912
0.1592 —0.1592 —0.4824 0.4824
0.2328 —-0.2328 —0.4739 0.4739
0.3050 —0.3050 —0.4654 0.4654
0.3758 —-0.3758 —0.4570 0.4570
0.0076 ~0.0076 —0.5000 0.5000
0.6716 ~0.6716 —0.4500 (.4500
1.3195 —1.3195 —0.4000 0.4000
1.9520 —1.9520 —0.3500 0.3500
2.5699 —2.5699 —0.3000 0.3000
31736 —3.1736 —0.2500 0.2500
22,7806 —20.8702 —0.8444 1.2443
21.6622 —19.8164 —0.7668 1.1503
20.4554 —18.7343 —0.6877 1.0534
19.1443 —17.6277 —0.6073 0.9529
17.7088 —16.5032 —0.5253 0.8481
16.1230 —15.3709 —0.4418 0.7377

gradients g’(0) and ¢’(1) at walls explain morc clearly
the heat transfer rates al walls and these can be altered
remarkably by the effect of compression work.

Flow-reversal and critical conditions

In the present radially rotating channels, the Aow-
reversal can be induced by Lhe centrifugal-buoyancy
and wall-transpiration. Since (he buoyancy cflect
depends strongly upon the temperature field, the wall-
heating (4) and the stress work (Ec*, G,) effects are
also the influential faclors for the threshold of flow-
reversal. Two modes. wall-Aow-reversal (WFR) and
in-field Aow-reversal (IFR), are presenled. The former
reveals a one-peak velocily distribution as that shown
in Fig. 4(a) and the latter possesses a double-peak
velocity profile as shown in Figs. 4(b) and 5. The
general feature of the critical conditions for the two
modes has been discussed in ref. [13].

Figurc 7 shows the stress work effects on the flow-
reversal condition for class 1. Due to the internal
heating caused by the stress work. the flow-reversal
usually can be postponed and the flow-reversal-free
(FRF) region in the critical parameter map is
enlarged. The effects are not noticeable in the cases
with low Rayleigh number. From equations (28), it is
very clear that the viscous dissipation effect can alter
the flow field through the nonlinear term — Ec*(f")".
Since Ec* is typically of order of 10~*, this effect can
be pronounced only at large values of Ra,,. As for the
compression work effecl, cases with G, = 0.1 were
considered. The corresponding term is Ra,,(1—~G,,) /”
in equation (28) or (30). It is found that the effect is
significanl also al large Ra,,.

In the presence of wall-transpiration the flow-rever-

sal mechanism becomes coupled and complicated.
The symmetry of the parameter map displayed in Fig.
7 is destroyed. The compression work effect on the
critical condition of fow-rcversal in buoyancy-
opposed and -assisted flows are shown in Figs. 8(a)
and (b). respectively. Since the effect may suppress the
buoyancy effect, it 1s expecled that the FRF region
can also be expanded in both the buoyancy-assisted
and buoyancy-opposed flows.
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F1G. 7. Critical parameter map with stress work eflects: FR,
flow-reversal ; FRF, flow-reversal-free.
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F1G. 8. Stress work effects on critical conditions ol flow-
reversal in a rotating semiporous-walled channel : (a) buoy-
ancy-opposed [lows : (b) buoyancy-assisted llows.

CONCLUDING REMARKS

The similarily solution has been obtained (o analyze
the mixed conveclion in radially rotating channels. In
the simple theoretical model many significant results,
that is, the velocity and lemperature distributions,
flow and heal (ransfer characteristics with the cflects
of wall-transpiration, centrifugal-buoyancy and.
especially. the stress work eflects are addressed. The
threshold of flow-reversal in the radially rolaling
channels are also included. It is believed that this
solution is valuable for Lhe understanding of the non-
isothermal rotating Aows.

In class 2. that is. one-side porous-walled channel.
the similarity model is restricted only Lo the cases with
Ec* = 0. In buoyancy-assisted flows, the stress work
eflecls can always reduce the heat transfer; however,
in buoyancy-opposed ones. the heal transfer rate may
be enhanced or reduced under different conditions.
Flow-reversal phenomena can be induced by the
buoyancy and wall-transpiration effects. Two modes.
WFR and IFR, are possible depending on the different
wall-heating conditions. The stress work generates the
internal heating effect and reduce the buoyancy eflect.

Thercfore. they can dclay the flow-reversal by the
centrifugal-buoyancy cffect. The effects are more
noticcable at large Rayleigh numbers.
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APPENDIX: ANALYTIC SOLUTIONS FOR

Re,=Ec'=0
(1) Ra,, = 0 (forced conveclion) :
flr) =37 =2y! (A1)
g9(1) =[0I =G)r+(I=G,) (3 —1x").  (A2)
(2} Ra,, > 0 (buoyancy-opposed mixed conveclion) :
f(y) = C,+C.sinh Ky + Cycosh Ky +C,sin Kr
+Cscos Ky (A3)

1
gly) = dr+ K’( I =G, C[(cosh Ky +cos Ky)

—r(cosh K+cos K)—2(1 —1)]
+ Cy(sinh Ky —r-sinh K) + C,(sin Ky — y - sin K))}
(A4)

where. by defining 0* = /(1 -G,,)

Ci= - !
ST

— Ko*[sin K+ sinh K— (1 +-cos K)(cosh K— )]} :

2sinh K(1 —cos K)

|
C, = A 1 Ko*({sinh K (cos K— 1)
1

+sin K(cosh K— 1)) —2sin Ksinh K} :
C, = C(cosh K~cos K)/sinh K+ (' sin K/sinh K ;
C.=-C: C=-C=Cy:

A, = —4[sinh K(I —cos K') —sin K (cosh K— )]
K= [Ra,l-G,)]'"

(3) Ru,, < 0 (buoyancy-assisted mixed convection) :

(0
Iy = ’L_, ( . ) sinay - sinhar
2a°
10y .
+ y - (sinay-coshay —cosay - sinhay)
4a’
AN (S
. (I—cosay-coshay) (AS)
dua
glry=0r—"_ 1 [sinay-coshar—cosar
: 4a’
. /7(0)
ssinhay — (k. — k)] — [l —cosar
' 4ua
1o
scoshay—r(1 =k )]+ " - . [sinay
8u
scoshar—cosar-smhay— vk, +k4)) (A6)

where
/7(0) = Alg [Sa“0*(ky— k) —8a™k (ko + k)
—8a™ (1 ~k )k, —k ) —16a°0*k (1 =k )]:
1740) = Al:[su"(k:—k‘)3+ 16a"8%(1 ~k (k4K )
+8a"(ky+k ) — 160 0% (k. —k)):

| 5 g
/) = A [16a’ (L —k ) y(k-+k,) +32a" 3%k

— 16a"3* (k3 —k3)— 16a’k (k. —k1)]:
A =2a tk,—k ) +da' (W =k )k, +ky)
—dat ki (ks k) +2a (ks Kk Wk —kD)
—8a'k (1 —k)(hk,—ky):
ky =sinu-sinha: k., =sina-cosha:
ky=cosu-sinhau:

a = [~ Ra, (1 —G,)4]"".

ky=cosa-cosha:



